tcp端口扫描的分类及其判定依据_TCP端口扫描单线程

hacker|
117

什么是端口扫描器?它有什么作用?

s 扫描器是一款命令行下高速扫描利器,通过最新的瑞星杀毒软件测试

命令: s.exe syn ip1 ip2 端口号 /save

s.exe tcp ip1 ip2 端口号 线程数 /save

s.exe扫描器的使用说明

首先我解释下什么是S扫描器,S扫描器是针对微软ms04045漏洞出的一个扫描,原来作者出这东西

的目的是为了扫描这个漏洞,但现在已经变成我们黑客手中的兵器了,大家也许看过很多如何找肉鸡的

动画或刷QB的动画,那些动画里面很多都是用S扫描器来扫描肉鸡或别人电脑所开放的端口及一些漏洞,

都用这工具的好处是它的扫描速度实在是一个字---强! 今天我就来教下大家如何使用S扫描器。

简单说明下它的用处:

S扫描器是一个简单的使用两种常用的扫描方式进行端口扫描的端口扫描器程序.

可实现的功能是:

1.两种不同的扫描方式(SYN扫描和一般的connect扫描)

2.可以扫描单个IP或IP段所有端口

3.可以扫描单个IP或IP段单个端口

4.可以扫描单个IP或IP段用户定义的端口

5.可以显示打开端口的banner

6.可将结果写入文件

7.TCP扫描可自定义线程数

用法:scanner TCP/SYN StartIP [EndIP] Ports [Threads] [/Banner] [/Save]

参数说明:

TCP/SYN - TCP方式扫描或SYN方式扫描(SYN扫描需要在win 2k或以上系统才行),SYN扫描对本机无效

StartIP - 起始扫描的IP

EndIP - 结束扫描的IP,可选项,如果这一项没有,就只是对单个IP扫描

Ports - 可以是单个端口,连续的一段端口或非连续的端口

Threads - 使用最大线程数去扫描(SYN扫描不需要加这一项),不能超过1024线程

/Banner - 扫描端口时一并将Banner显示出来,这一选项只对TCP扫描有效

/Save - 将结果写入当前目录的Result.txt文件中去

打开S扫描器,下面我举几个例子演示下S扫描器的主要几个作用。

例子一:

S TCP 218.80.12.1 218.80.12.123 80 512

TCP扫描218.80.12.1到218.80.12.123这IP段中的80端口,最大并发线程是512

例子二:

S TCP 218.80.12.1 218.80.12.123 21,5631 512 /Banner

TCP扫描218.80.12.1到218.80.12.123这IP段中的21和5631端口,最大并发线程是512,并显示Banner

例子三:

S TCP 218.80.12.1 218.80.12.12 1-200 512

TCP扫描218.80.12.1到218.80.12.12这IP段中的1到200端口,最大并发线程是512

例子四:

S TCP 218.80.12.7 1-200 512

TCP扫描218.80.12.7这IP中的1到200端口,最大并发线程是512

例子五:

S SYN 218.80.12.7 1-65535 /Save

SYN扫描218.80.12.7这IP中的1到65535端口,将结果写入Result.txt

扫描结束后Result.txt就存放在你的S扫描器所在的目录里。刚才扫描的东西都在里面。

例子六:

S SYN 218.80.12.1 218.80.12.255 21 /Save

SYN扫描218.80.12.1到218.80.12.255这IP段中的21端口,将结果写入Result.txt

这个我重点说明一下,因为这条命令就是专门用来找肉鸡的,扫描一个IP段有没有开3389的或1433的

我示范下:S SYN 218.80.1.1 218.80.255.255 3389 /Save

注意:

1.SYN扫描是很依赖于扫描者和被扫描者的网速的,如果你是内网的系统,那你不一定可以使用SYN扫描的

,因为你的网关的类型会决定内网系统是否能进行SYN扫描.如果你的配置较低的话,我也不推荐使用

SYN扫描.SYN扫描速度是比TCP扫描的速度快很多的,但在稳定性方面却不是太好,所以自己决定使用

哪种模式进行扫描。

2.SYN扫描不需要线程那个参数,请看上面例子5和6

3.TCP扫描的最大并发线程不能超过1024.

4.使用SYN模式扫描,不能扫描Banner,具体为什么不能,请查看有关SYN的资料

5.内网用户的朋友可以用tcp扫描

关于S.exe 的用法和错误解释

S扫描器扫描命令是:

文件名 参数 起始IP 结束IP 要扫描的端口 保存

s SYN 61.0.0.0 61.255.255.255 1433 save

1433是SQL server 服务器端口

8080是代理服务器端口

分析X-Scan,写出它的使用方法以及配置方法,同时抓包分析其扫描原理。如果有兴趣分析一下其脚本

一. 系统要求:Windows NT/2000/XP/2003

理论上可运行于Windows NT系列操作系统,推荐运行于Windows 2000以上的Server版Windows系统。

二. 功能简介:

采用多线程方式对指定IP地址段(或单机)进行安全漏洞检测,支持插件功能。扫描内容包括:远程服务类型、操作系统类型及版本,各种弱口令漏洞、后门、应用服务漏洞、网络设备漏洞、拒绝服务漏洞等二十几个大类。对于多数已知漏洞,我们给出了相应的漏洞描述、解决方案及详细描述链接,其它漏洞资料正在进一步整理完善中,您也可以通过本站的“安全文摘”和“安全漏洞”栏目查阅相关说明。

3.0及后续版本提供了简单的插件开发包,便于有编程基础的朋友自己编写或将其他调试通过的代码修改为X-Scan插件。另外Nessus攻击脚本的翻译工作已经开始,欢迎所有对网络安全感兴趣的朋友参与。需要“Nessus攻击脚本引擎”源代码、X-Scan插件SDK、示例插件源代码或愿意参与脚本翻译工作的朋友,可通过本站“X-Scan”项目链接获取详细资料:“”。

三. 所需文件:

xscan_gui.exe -- X-Scan图形界面主程序

checkhost.dat -- 插件调度主程序

update.exe -- 在线升级主程序

*.dll -- 主程序所需动态链接库

使用说明.txt -- X-Scan使用说明

/dat/language.ini -- 多语言配置文件,可通过设置“LANGUAGE\SELECTED”项进行语言切换

/dat/language.* -- 多语言数据文件

/dat/config.ini -- 当前配置文件,用于保存当前使用的所有设置

/dat/*.cfg -- 用户自定义配置文件

/dat/*.dic -- 用户名/密码字典文件,用于检测弱口令用户

/plugins -- 用于存放所有插件(后缀名为.xpn)

/scripts -- 用于存放所有NASL脚本(后缀名为.nasl)

/scripts/desc -- 用于存放所有NASL脚本多语言描述(后缀名为.desc)

/scripts/cache -- 用于缓存所有NASL脚本信息,以便加快扫描速度(该目录可删除)

四. 准备工作:

X-Scan是完全免费软件,无需注册,无需安装(解压缩即可运行,自动检查并安装WinPCap驱动程序)。若已经安装的WinPCap驱动程序版本不正确,请通过主窗口菜单的“工具”-“Install WinPCap”重新安装“WinPCap 3.1 beta4”或另行安装更高版本。

五. 图形界面设置项说明:

“检测范围”模块:

“指定IP范围” - 可以输入独立IP地址或域名,也可输入以“-”和“,”分隔的IP范围,如“192.168.0.1-20,192.168.1.10-192.168.1.254”,或类似“192.168.100.1/24”的掩码格式。

“从文件中获取主机列表” - 选中该复选框将从文件中读取待检测主机地址,文件格式应为纯文本,每一行可包含独立IP或域名,也可包含以“-”和“,”分隔的IP范围。

“全局设置”模块:

“扫描模块”项 - 选择本次扫描需要加载的插件。

“并发扫描”项 - 设置并发扫描的主机和并发线程数,也可以单独为每个主机的各个插件设置最大线程数。

“网络设置”项 - 设置适合的网络适配器,若找不到网络适配器,请重新安装WinPCap 3.1 beta4以上版本驱动。

“扫描报告”项 - 扫描结束后生成的报告文件名,保存在LOG目录下。扫描报告目前支持TXT、HTML和XML三种格式。

“其他设置”项:

“跳过没有响应的主机” - 若目标主机不响应ICMP ECHO及TCP SYN报文,X-Scan将跳过对该主机的检测。

“无条件扫描” - 如标题所述

“跳过没有检测到开放端口的主机” - 若在用户指定的TCP端口范围内没有发现开放端口,将跳过对该主机的后续检测。

“使用NMAP判断远程操作系统” - X-Scan使用SNMP、NETBIOS和NMAP综合判断远程操作系统类型,若NMAP频繁出错,可关闭该选项。

“显示详细信息” - 主要用于调试,平时不推荐使用该选项。

“插件设置”模块:

该模块包含针对各个插件的单独设置,如“端口扫描”插件的端口范围设置、各弱口令插件的用户名/密码字典设置等。

六. 常见问题解答:

Q:如果没有安装WinPCap驱动程序是否能正常使用X-Scan进行扫描?

A:如果系统未安装WinPCap驱动,X-Scan启动后会自动安装WinPCap 3.1;如果系统已经安装了WinPCap更高版本,X-Scan则使用已有版本。

Q:扫描一个子网,进程里同时出现10个checkhost.exe的进程是什么原因?

A:检测每个主机都会单独起一个Checkhost.exe进程,检测完毕会自动退出。并发主机数量可以通过图形界面的设置窗口设定,命令行程序通过“-t”参数设定。

Q:扫描过程中机器突然蓝屏重启是什么原因?

A:扫描过程中系统蓝屏是有可能的,AtGuard、天网等防火墙的驱动程序在处理特殊包的时候有可能出错导致系统崩溃,另外很多防火墙驱动与WinPCap驱动本身也存在冲突,建议先禁止或卸载防火墙程序再试试。

Q:操作系统识别不正确是什么原因?

A:操作系统识别方面确实不能保证100%的准确率,目前是综合NMAP、P0F的指纹库、NETBIOS信息和SNMP信息进行识别,如果目标机器没有开放NETBIOS和SNMP协议,TCP/IP堆栈指纹也不在数据库中,就需要使用者根据其他信息综合分析了。

Q:为什么在一次扫描中我选择了“SYN”方式进行端口扫描,但X-Scan实际采用的是“TCP”方式,而且也没有被动识别出目标操作系统?

A:端口扫描中的“SYN”方式在NT4或XP+SP2系统下无法使用,在windows 2000等系统下使用时必须拥有管理员权限,否则将自动改用“TCP”方式进行端口扫描。

Q:新版本是否兼容2.3版本的插件?

A:X-Scan 3.0以上版本的插件接口做了少量修改,不兼容2.3以前版本的插件,需要原作者做相应修改。3.0以上版本提供了简单的开发库,插件开发方面要比2.3版本轻松许多。

Q:我看到Scripts目录下有很多nessus的脚本,是否可以自己从nessus的网站上下载最新的plugin,然后解压到scripts目录中,实现扫描最新漏洞?

A:X-Scan移植了nessus的nasl引擎,目前对应于nessus2.2.4,但不包含对本地检测脚本的支持。所以只要是这个版本nessus支持的非本地检测脚本,都可以复制到Scripts目录下加载。

Q:X-Scan中各项弱口令插件检测范围都很有限,能否自己加入其他需要检测的帐号或口令?

A:在“X-Scan”中内置的密码字典仅为简单示范,使用者如果希望软件有更强的密码猜解能力,可以自己编辑密码字典文件。

Q:为什么nasl脚本扫描结果中存在大量英文,将来有没有可能会对这些英文信息进行汉化?

A:目前已有将近2000个NASL脚本,里面的描述信息大都是英文,需要翻译的内容可以在本站“焦点项目”中的X-Scan下看到。欢迎大家一起帮忙翻译,通过审核后会直接加入在线升级库供大家下载。

Q:用xscan.exe在命令行方式下进行扫描时,如何暂停或终止扫描?

A:命令行方式检测过程中,按“[空格]”键可查看各线程状态及扫描进度,按“[回车]”可暂停或继续扫描,按“q”键可保存当前数据后提前退出程序,按“ctrl+c”强行关闭程序。

Q:X-Scan如何安装,是否需要注册?

A:X-Scan是完全免费软件,无需注册,无需安装(解压缩即可运行,自动安装WinPCap驱动)。

七. 版本发布:

X-Scan v3.3 -- 发布日期:07/18/2005,优化主程序及NASL库;修正已知BUG;更新攻击测试脚本及中文描述。

感谢wlj、killer、coolc协助测试,感谢通过各种方式提供反馈信息及建议的朋友。

X-Scan v3.2 -- 发布日期:04/08/2005,升级NASL库,优化主程序及NASL库;增加HTTP/TELNET/SSH/VNC/CVS/IMAP等弱口令检测插件;修正已知BUG。

感谢wlj提供大量改进建议及相关资料,感谢安全焦点全体成员和coolc、killer等朋友协助测试。

X-Scan v3.1 -- 发布日期:03/25/2004,修改“存活主机”插件,加入2.3版本中SNMP、NETBIOS插件,优化主程序及NASL库。

X-Scan v3.02 -- 发布日期:03/08/2004,“WinPCap 3.1 beta”中存在BUG,可能导致CheckHost.exe异常。X-Scan中改用“WinPCap 2.3”,建议卸载“WinPCap 3.1 beta”后再使用X-Scan进行扫描。

X-Scan v3.0 -- 发布日期:03/01/2004,修正beta版本中已知BUG,对主程序及所有插件进行优化,升级NASL库,支持2.0.10a版本以前的所有NASL脚本;提供简单的开发包方便其他朋友共同开发插件;其他插件正在开发中。

感谢悟休、quack帮忙精选nasl脚本列表,感谢san为支持X-Scan项目编写相关页面程序。再次感谢安全焦点论坛上所有提供优秀思路和协助测试的朋友们。

X-Scan v3.0(beta) -- 发布日期:12/30/2003,对主程序结构进行调整,加入移植的NASL插件,支持2.0.9版本以前的所有NASL脚本;对插件接口做少量修改,方便由其他朋友共同开发插件;对远程操作系统识别功能进行了加强,并去掉了一些可由脚本完成的插件。

感谢isno和Enfis提供优秀插件,感谢悟休、quack帮忙精选nasl脚本列表,也感谢其他提供优秀思路和协助测试的朋友。

X-Scan v2.3 -- 发布日期:09/29/2002,新增SSL插件,用于检测SSL漏洞;升级PORT、HTTP、IIS插件;升级图形界面并对界面风格作细微调整。

感谢ilsy提供优秀插件。

X-Scan v2.2 -- 发布日期:09/12/2002,修正PORT插件中线程同步BUG;修正RPC插件字符显示BUG;扩充RPC漏洞数据库;调整扫描结果索引文件风格。

感谢xundi、quack、stardust搜集并整理漏洞数据库。

X-Scan v2.1 -- 发布日期:09/08/2002,将SNMP插件扫描项目改为可选;将HTTP、IIS、RPC插件中的“漏洞描述”链接到xundi整理的漏洞数据库;修正2.0以前版本中已知BUG。

X-Scan v2.0 -- 发布日期:08/07/2002,新增路由信息检测、SNMP信息检测插件;升级NETBIOS插件,新增远程注册表信息检测;升级IIS插件,新增对IIS.ASP漏洞的检测;对插件接口做细微修改;更新图形界面,新增“在线升级”功能;扩充CGI漏洞数据库;修正1.3以前版本中已知BUG。

感谢quack、stardust、sinister、ilsy、santa、bingle、casper提供宝贵资料或优秀插件,感谢san、xundi、e4gle协助测试,也感谢所有来信反馈和提出建议的热心朋友。

X-Scan v1.3 -- 发布日期:12/11/2001,修正PORT插件中关于远程操作系统识别的BUG。

X-Scan v1.2 -- 发布日期:12/02/2001,升级HTTP、IIS插件,新增对HTTP重定向错误页面识别功能;升级PORT插件,在无法创建Raw Socket时改为使用标准TCP连接方式检测开放端口。

X-Scan v1.1 -- 发布日期:11/25/2001,将所有检测功能移入插件,使主程序完全成为“容器”;提供多语言支持;更新图形接口程序;修改多线程模式,所有插件共享最大线程数量,提高并发检测速度;新增SMTP、POP3弱口令用户检测;新增IIS UTF-Code漏洞检测;扩充CGI漏洞列表。

感谢xundi、quack、casper、wollf、黄承等朋友提供的宝贵资料,感谢echo、力立等朋友协助测试,再次向付出了重体力劳动的xundi和quack致谢,涕零.....

X-Scan v1.0(beta) -- 发布日期:07/12/2001,新增对远程操作系统类型及版本识别功能;新增对远程主机地理位置查询功能;在“-iis”选项中,新增对IIS “.ida/.idq”漏洞的扫描,同时更新漏洞描述;在“-port”参数中,允许指定扫描的端口范围(通过修改“dat\config.ini”文件中的“[PORT-LIST]\port=”);在“-ntpass”参数中,允许用户在编辑密码字典时通过“%”通配所有用户名;更新CGI漏洞列表,并对CGI漏洞进行分类,以便根据远程主机系统类型扫描特定CGI漏洞,加快扫描速度。

感谢“天眼”软件作者--watercloud提供“被动识别远程操作系统”模块;感谢“追捕”软件作者--冯志宏提供“IP-地理位置”数据库;感谢quack提供漏洞资料、程序资料、无数有价值的建议还有感情和......

X-Scanner v0.61 -- 发布日期:05/17/2001,在“-iis”选项中新增对IIS CGI文件名二次解码漏洞的检测。

X-Scanner v0.6 -- 发布日期:05/15/2001,新增“-iis”参数,专门用于扫描IIS服务器的“unicode”及“remote .printer overflow”漏洞;更新漏洞描述;调整CGI扫描的超时时间,尽量避免因超时导致的“扫描未完成”情况出现;为避免“RedV”插件被恶意利用,将自动更换主页功能改为自动向“C:\”目录上传包含警告信息的文本文件。

X-Scanner v0.5 -- 发布日期:04/30/2001,修改了命令行参数,使参数含义更加直观;扩充CGI漏洞数据库;对NT弱口令扫描功能进行扩充--允许用户使用用户名及密码字典;增加插件功能,并公布插件接口。

感谢“santa”和“老鬼(colossus)”提供插件。

X-Scanner v0.42b -- 发布日期:03/07/2001,修正了“-b”选项在特定情况导致系统overflow的BUG。

X-Scanner v0.42 -- 发布日期:03/02/2001,允许用户对SQL-SERVER帐户进行扩充,而不局限于扫描“sa”空口令。

X-Scanner v0.41 -- 发布日期:02/19/2001,修正了以前版本中对FTP弱口令检测的BUG;重新优化代码,将xscan.exe与xscan98合二为一。

X-Scanner v0.4 -- 发布日期:02/15/2001,加入对SQL-SERVER默认“sa”帐户的扫描;在充分认识了某些人的惰性之后,临时制作了傻瓜式图形界面(一切操作按序号点击即可)。

X-Scanner v0.31 -- 发布日期:01/17/2001,对端口扫描方式和输出文件的格式做了细微调整;对Unicode解码漏洞进行了扩充;提供了for win98的版本和一个简单的CGI列表维护工具。

X-Scanner v0.3 -- 发布日期:12/27/2000,加入线程超时限制;增加代理功能;扩充CGI漏洞数据库,加入对Unicode解码等漏洞的检测及描述;修正内存泄露问题。内部测试版。

X-Scanner v0.2 -- 发布日期:12/12/2000,内部测试

魅族手机上面的ping tools pro是什么功能?

PingTools Pro安卓版,一款功能十分全面的手机网络测试工具,拥有dns查找、WiFi扫描仪、域名注册、IP计算器、端口扫描器、路由跟踪等多种功能,简单使用,让您轻松检测网络状况。

软件介绍:

这是PingTools的专业版。通过购买这个程序,你会支持进一步发展,另外这个版本没有广告。

软件功能:

信息工具,在这里你可以看到网络连接状态,在Wi-Fi路由器,外部IP地址,有关您的ISP和更多的IP地址。此外,信息屏幕显示的Wi-Fi连接和网络使用的几个有用的图表。

观察 - 如期检查网络资源。看守显示通知,如果资源的状态发生了变化,它可以让你随时了解与网络在家里还是在工作的任何问题。

局域网 - 寻找其他的网络设备。你将永远知道谁在连接到您的网络,以及识别硬件制造商和什么样的服务在这些设备上运行。

平 - 工具不需要描述。您可以使用一组标准的参数,以及额外的功能,如TCP和HTTP \ HTTPS平。后台工作和声音通知将让您监视远程主机的状态,而不会分心。

GeoPing - 检查整个世界资源的可用性。只需点击一下鼠标,你可以找到自己的网站是否是在新加坡前访问。

路由跟踪 - 不可缺少为系统管理员工具。显示在其上的数据包是从设备到目标主机的路由。可视化跟踪路由使用的地图为您展示的数据包如何去绕地球到达指定的目的地。

iperf - 效用,用于分析网络带宽。它是基于iperf3并同时支持服务器和客户端模式。

端口扫描器 - 一个强大的多线程TCP端口扫描仪。有了这个工具,你可以得到一个远程设备上的开放端口的列表。大多数港口的显示与说明,所以你会知道什么应用程序使用它。

域名注册 - 显示关于域或IP地址的信息的工具。随着域名注册的帮助下,你可以找到关于组织,联系信息等领域信息的登记日期。

UPnP扫描仪 - 显示您的本地网络上的UPnP设备。 UPnP的扫描仪,你可以找到你的路由器,游戏机一样的Xbox或PlayStation,媒体服务器和其他设备的IP地址。 DLNA兼容的电视和媒体盒(三星的AllShare,LG SmartShare)也支持。

Bonjour浏览器- 是用于在网络上探索的Bonjour(ZeroConf的,的avahi)服务的网络效用。卓悦已内置与苹果的操作系统,所以你可以使用这个工具来搜索一个iPhone \ iPod的等的网络地址

Wi-Fi扫描仪 - 你身边的接入点列表。此外,你可以找到的AP的制造商,信号电平以及很多其他的信息。您可以使用图表来直观地欣赏这一切。同时支持2.4GHz和5GHz的设备。

子网扫描仪 - 这个工具可以扫描你的Wi-Fi子网各地寻找其他主机。扫描仪可以通过Ping检测主机,或者检查多个TCP端口。所以u能简单地找到服务于你的子网(为前扫描22端口找到哪里是SSH运行)。您还可以自定义扫描配置IP地址范围。

DNS查找 - 工具用于查询域名系统(DNS)名称服务器。对于网络故障诊断有用的或只是找出域,邮件服务器和更多的IP地址。反向DNS支持以及。

局域网唤醒 - 是一种工具,允许你发送一个特殊的数据包(称为魔术包)远程打开网络计算机上。网络唤醒是在案件只是不可替代的,当你没有电脑,这是突然关闭物理访问。

IP计算器 - 设置网络设备时,此实用工具是有用的。 IP计算器帮助您计算网络的参数,确定IP地址,子网掩码的范围。

Python 实现端口扫描

一、常见端口扫描的原理

0、秘密扫描

秘密扫描是一种不被审计工具所检测的扫描技术。

它通常用于在通过普通的防火墙或路由器的筛选(filtering)时隐藏自己。

秘密扫描能躲避IDS、防火墙、包过滤器和日志审计,从而获取目标端口的开放或关闭的信息。由于没有包含TCP 3次握手协议的任何部分,所以无法被记录下来,比半连接扫描更为隐蔽。

但是这种扫描的缺点是扫描结果的不可靠性会增加,而且扫描主机也需要自己构造IP包。现有的秘密扫描有TCP FIN扫描、TCP ACK扫描、NULL扫描、XMAS扫描和SYN/ACK扫描等。

1、Connect()扫描

此扫描试图与每一个TCP端口进行“三次握手”通信。如果能够成功建立接连,则证明端口开发,否则为关闭。准确度很高,但是最容易被防火墙和IDS检测到,并且在目标主机的日志中会记录大量的连接请求以及错误信息。

TCP connect端口扫描服务端与客户端建立连接成功(目标端口开放)的过程:

① Client端发送SYN;

② Server端返回SYN/ACK,表明端口开放;

③ Client端返回ACK,表明连接已建立;

④ Client端主动断开连接。

建立连接成功(目标端口开放)

TCP connect端口扫描服务端与客户端未建立连接成功(目标端口关闭)过程:

① Client端发送SYN;

② Server端返回RST/ACK,表明端口未开放。

优点:实现简单,对操作者的权限没有严格要求(有些类型的端口扫描需要操作者具有root权限),系统中的任何用户都有权力使用这个调用,而且如果想要得到从目标端口返回banners信息,也只能采用这一方法。

另一优点是扫描速度快。如果对每个目标端口以线性的方式,使用单独的connect()调用,可以通过同时打开多个套接字,从而加速扫描。

缺点:是会在目标主机的日志记录中留下痕迹,易被发现,并且数据包会被过滤掉。目标主机的logs文件会显示一连串的连接和连接出错的服务信息,并且能很快地使它关闭。

2、SYN扫描

扫描器向目标主机的一个端口发送请求连接的SYN包,扫描器在收到SYN/ACK后,不是发送的ACK应答而是发送RST包请求断开连接。这样,三次握手就没有完成,无法建立正常的TCP连接,因此,这次扫描就不会被记录到系统日志中。这种扫描技术一般不会在目标主机上留下扫描痕迹。但是,这种扫描需要有root权限。

·端口开放:(1)Client发送SYN;(2)Server端发送SYN/ACK;(3)Client发送RST断开(只需要前两步就可以判断端口开放)

·端口关闭:(1)Client发送SYN;(2)Server端回复RST(表示端口关闭)

优点:SYN扫描要比TCP Connect()扫描隐蔽一些,SYN仅仅需要发送初始的SYN数据包给目标主机,如果端口开放,则相应SYN-ACK数据包;如果关闭,则响应RST数据包;

3、NULL扫描

反向扫描—-原理是将一个没有设置任何标志位的数据包发送给TCP端口,在正常的通信中至少要设置一个标志位,根据FRC 793的要求,在端口关闭的情况下,若收到一个没有设置标志位的数据字段,那么主机应该舍弃这个分段,并发送一个RST数据包,否则不会响应发起扫描的客户端计算机。也就是说,如果TCP端口处于关闭则响应一个RST数据包,若处于开放则无相应。但是应该知道理由NULL扫描要求所有的主机都符合RFC 793规定,但是windows系统主机不遵从RFC 793标准,且只要收到没有设置任何标志位的数据包时,不管端口是处于开放还是关闭都响应一个RST数据包。但是基于Unix(*nix,如Linux)遵从RFC 793标准,所以可以用NULL扫描。 经过上面的分析,我们知道NULL可以辨别某台主机运行的操作系统是什么操作系统。

端口开放:Client发送Null,server没有响应

端口关闭:(1)Client发送NUll;(2)Server回复RST

说明:Null扫描和前面的TCP Connect()和SYN的判断条件正好相反。在前两种扫描中,有响应数据包的表示端口开放,但在NUll扫描中,收到响应数据包表示端口关闭。反向扫描比前两种隐蔽性高些,当精确度也相对低一些。

用途:判断是否为Windows系统还是Linux。

4、FIN扫描

与NULL有点类似,只是FIN为指示TCP会话结束,在FIN扫描中一个设置了FIN位的数据包被发送后,若响应RST数据包,则表示端口关闭,没有响应则表示开放。此类扫描同样不能准确判断windows系统上端口开发情况。

·端口开放:发送FIN,没有响应

·端口关闭:(1)发送FIN;(2)回复RST

5、ACK扫描

扫描主机向目标主机发送ACK数据包。根据返回的RST数据包有两种方法可以得到端口的信息。方法一是: 若返回的RST数据包的TTL值小于或等于64,则端口开放,反之端口关闭。

6、Xmas-Tree扫描

通过发送带有下列标志位的tcp数据包。

·URG:指示数据时紧急数据,应立即处理。

·PSH:强制将数据压入缓冲区。

·FIN:在结束TCP会话时使用。

正常情况下,三个标志位不能被同时设置,但在此种扫描中可以用来判断哪些端口关闭还是开放,与上面的反向扫描情况相同,依然不能判断windows平台上的端口。

·端口开放:发送URG/PSH/FIN,没有响应

·端口关闭:(1)发送URG/PSH/FIN,没有响应;(2)响应RST

XMAS扫描原理和NULL扫描的类似,将TCP数据包中的ACK、FIN、RST、SYN、URG、PSH标志位置1后发送给目标主机。在目标端口开放的情况下,目标主机将不返回任何信息。

7、Dump扫描

也被称为Idle扫描或反向扫描,在扫描主机时应用了第三方僵尸计算机扫描。由僵尸主机向目标主机发送SYN包。目标主机端口开发时回应SYN|ACK,关闭时返回RST,僵尸主机对SYN|ACK回应RST,对RST不做回应。从僵尸主机上进行扫描时,进行的是一个从本地计算机到僵尸主机的、连续的ping操作。查看僵尸主机返回的Echo响应的ID字段,能确定目标主机上哪些端口是开放的还是关闭的。

二、Python 代码实现

1、利用Python的Socket包中的connect方法,直接对目标IP和端口进行连接并且尝试返回结果,而无需自己构建SYN包。

2、对IP端口进行多线程扫描,注意的是不同的电脑不同的CPU每次最多创建的线程是不一样的,如果创建过多可能会报错,需要根据自己电脑情况修改每次扫描的个数或者将seelp的时间加长都可以。

看完了吗?感觉动手操作一下把!

python学习网,免费的在线学习python平台,欢迎关注!

本文转自:

Kali Linux 网络扫描秘籍 第三章 端口扫描(二)

执行 TCP 端口扫描的一种方式就是执行一部分。目标端口上的 TCP 三次握手用于识别端口是否接受连接。这一类型的扫描指代隐秘扫描, SYN 扫描,或者半开放扫描。这个秘籍演示了如何使用 Scapy 执行 TCP 隐秘扫描。

为了使用 Scapy 执行 TCP 隐秘 扫描,你需要一个运行 TCP 网络服务的远程服务器。这个例子中我们使用 Metasploitable2 实例来执行任务。配置 Metasploitable2 的更多信息请参考第一章中的“安装 Metasploitable2”秘籍。

此外,这一节也需要编写脚本的更多信息,请参考第一章中的“使用文本编辑器*VIM 和 Nano)。

为了展示如何执行 SYN 扫描,我们需要使用 Scapy 构造 TCP SYN 请求,并识别和开放端口、关闭端口以及无响应系统有关的响应。为了向给定端口发送 TCP SYN 请求,我们首先需要构建请求的各个层面。我们需要构建的第一层就是 IP 层:

为了构建请求的 IP 层,我们需要将 IP 对象赋给变量 i 。通过调用 display 函数,我们可以确定对象的属性配置。通常,发送和接受地址都设为回送地址, 127.0.0.1 。这些值可以通过修改目标地址来修改,也就是设置 i.dst 为想要扫描的地址的字符串值。通过再次调用 dislay 函数,我们看到不仅仅更新的目标地址,也自动更新了和默认接口相关的源 IP 地址。现在我们构建了请求的 IP 层,我们可以构建 TCP 层了。

为了构建请求的 TCP 层,我们使用和 IP 层相同的技巧。在这个立即中, TCP 对象赋给了 t 变量。像之前提到的那样,默认的配置可以通过调用 display 函数来确定。这里我们可以看到目标端口的默认值为 HTTP 端口 80。对于我们的首次扫描,我们将 TCP 设置保留默认。现在我们创建了 TCP 和 IP 层,我们需要将它们叠放来构造请求。

我们可以通过以斜杠分离变量来叠放 IP 和 TCP 层。这些层面之后赋给了新的变量,它代表整个请求。我们之后可以调用 dispaly 函数来查看请求的配置。一旦构建了请求,可以将其传递给 sr1 函数来分析响应:

相同的请求可以不通过构建和堆叠每一层来执行。反之,我们使用单独的一条命令,通过直接调用函数并传递合适的参数:

要注意当 SYN 封包发往目标 Web 服务器的 TCP 端口 80,并且该端口上运行了 HTTP 服务时,响应中会带有 TCP 标识 SA 的值,这表明 SYN 和 ACK 标识都被激活。这个响应表明特定的目标端口是开放的,并接受连接。如果相同类型的封包发往不接受连接的端口,会收到不同的请求。

当 SYN 请求发送给关闭的端口时,返回的响应中带有 TCP 标识 RA,这表明 RST 和 ACK 标识为都被激活。ACK 为仅仅用于承认请求被接受,RST 为用于断开连接,因为端口不接受连接。作为替代,如果 SYN 封包发往崩溃的系统,或者防火墙过滤了这个请求,就可能接受不到任何信息。由于这个原因,在 sr1 函数在脚本中使用时,应该始终使用 timeout 选项,来确保脚本不会在无响应的主机上挂起。

如果函数对无响应的主机使用时, timeout 值没有指定,函数会无限继续下去。这个演示中, timout 值为 1秒,用于使这个函数更加完备,响应的值可以用于判断是否收到了响应:

Python 的使用使其更易于测试变量来识别 sr1 函数是否对其复制。这可以用作初步检验,来判断是否接收到了任何响应。对于接收到的响应,可以执行一系列后续检查来判断响应表明端口开放还是关闭。这些东西可以轻易使用 Python 脚本来完成,像这样:

在这个 Python 脚本中,用于被提示来输入 IP 地址,脚本之后会对定义好的端口序列执行 SYN 扫描。脚本之后会得到每个连接的响应,并尝试判断响应的 SYN 和 ACK 标识是否激活。如果响应中出现并仅仅出现了这些标识,那么会输出相应的端口号码。

运行这个脚本之后,输出会显示所提供的 IP 地址的系统上,前 100 个端口中的开放端口。

这一类型的扫描由发送初始 SYN 封包给远程系统的目标 TCP 端口,并且通过返回的响应类型来判断端口状态来完成。如果远程系统返回了 SYN+ACK 响应,那么它正在准备建立连接,我们可以假设这个端口开放。如果服务返回了 RST 封包,这就表明端口关闭并且不接收连接。此外,如果没有返回响应,扫描系统和远程系统之间可能存在防火墙,它丢弃了请求。这也可能表明主机崩溃或者目标 IP 上没有关联任何系统。

Nmap 拥有可以执行远程系统 SYN 扫描的扫描模式。这个秘籍展示了如何使用 Namp 执行 TCP 隐秘扫描。

为了使用 Nmap 执行 TCP 隐秘扫描,你需要一个运行 TCP 网络服务的远程服务器。这个例子中我们使用 Metasploitable2 实例来执行任务。配置 Metasploitable2 的更多信息请参考第一章中的“安装 Metasploitable2”秘籍。

就像多数扫描需求那样,Nmap 拥有简化 TCP 隐秘扫描执行过程的选项。为了使用 Nmap 执行 TCP 隐秘扫描,应使用 -sS 选项,并附带被扫描主机的 IP 地址。

在提供的例子中,特定的 IP 地址的 TCP 80 端口上执行了 TCP 隐秘扫描。和 Scapy 中的技巧相似,Nmap 监听响应并通过分析响应中所激活的 TCP 标识来识别开放端口。我们也可以使用 Namp 执行多个特定端口的扫描,通过传递逗号分隔的端口号列表。

在这个例子中,目标 IP 地址的端口 21、80 和 443 上执行了 SYN 扫描。我们也可以使用 Namp 来扫描主机序列,通过标明要扫描的第一个和最后一个端口号,以破折号分隔:

在所提供的例子中,SYN 扫描在 TCP 20 到 25 端口上执行。除了拥有指定被扫描端口的能力之外。Nmap 同时拥有配置好的 1000 和常用端口的列表。我们可以执行这些端口上的扫描,通过不带任何端口指定信息来运行 Nmap:

在上面的例子中,扫描了 Nmap 定义的 1000 个常用端口,用于识别 Metasploitable2 系统上的大量开放端口。虽然这个技巧在是被多数设备上很高效,但是也可能无法识别模糊的服务或者不常见的端口组合。如果扫描在所有可能的 TCP 端口上执行,所有可能的端口地址值都需要被扫描。定义了源端口和目标端口地址的 TCP 头部部分是 16 位长。并且,每一位可以为 1 或者 0。因此,共有 2 ** 16 或者 65536 个可能的 TCP 端口地址。对于要扫描的全部可能的地址空间,需要提供 0 到 65535 的端口范围,像这样:

这个例子中,Metasploitable2 系统上所有可能的 65536 和 TCP 地址都扫描了一遍。要注意该扫描中识别的多数服务都在标准的 Nmap 1000 扫描中识别过了。这就表明在尝试识别目标的所有可能的攻击面的时候,完整扫描是个最佳实践。Nmap 可以使用破折号记法,扫描主机列表上的 TCP 端口:

这个例子中,TCP 80 端口的 SYN 扫描在指定地址范围内的所有主机上执行。虽然这个特定的扫描仅仅执行在单个端口上,Nmap 也能够同时扫描多个系统上的多个端口和端口范围。此外,Nmap 也能够进行配置,基于 IP 地址的输入列表来扫描主机。这可以通过 -iL 选项并指定文件名,如果文件存放于执行目录中,或者文件路径来完成。Nmap 之后会遍历输入列表中的每个地址,并对地址执行特定的扫描。

Nmap SYN 扫描背后的底层机制已经讨论过了。但是,Nmap 拥有多线程功能,是用于执行这类扫描的快速高效的方式。

除了其它已经讨论过的工具之外,Metasploit 拥有用于 SYN 扫描的辅助模块。这个秘籍展示了如何使用 Metasploit 来执行 TCP 隐秘扫描。

为了使用 Metasploit 执行 TCP 隐秘扫描,你需要一个运行 TCP 网络服务的远程服务器。这个例子中我们使用 Metasploitable2 实例来执行任务。配置 Metasploitable2 的更多信息请参考第一章中的“安装 Metasploitable2”秘籍。

Metasploit 拥有可以对特定 TCP 端口执行 SYN 扫描的辅助模块。为了在 Kali 中启动 Metasploit,我们在终端中执行 msfconsole 命令。

为了在 Metasploit 中执行 SYN 扫描,以辅助模块的相对路径调用 use 命令。一旦模块被选中,可以执行 show options 命令来确认或修改扫描配置。这个命令会展示四列的表格,包括 name 、 current settings 、 required 和 description 。 name 列标出了每个可配置变量的名称。 current settings 列列出了任何给定变量的现有配置。 required 列标出对于任何给定变量,值是否是必须的。 description 列描述了每个变量的功能。任何给定变量的值可以使用 set 命令,并且将新的值作为参数来修改。

在上面的例子中, RHOSTS 值修改为我们打算扫描的远程系统的 IP 地址。地外,线程数量修改为 20。 THREADS 的值定义了在后台执行的当前任务数量。确定线程数量涉及到寻找一个平衡,既能提升任务速度,又不会过度消耗系统资源。对于多数系统,20 个线程可以足够快,并且相当合理。 PORTS 值设为 TCP 端口 80(HTTP)。修改了必要的变量之后,可以再次使用 show options 命令来验证。一旦所需配置验证完毕,就可以执行扫描了。

上面的例子中,所指定的远程主机的钱 100 个 TCP 端口上执行了 TCP SYN 扫描。虽然这个扫描识别了目标系统的多个设备,我们不能确认所有设备都识别出来,除非所有可能的端口地址都扫描到。定义来源和目标端口地址的TCP 头部部分是 16 位长。并且,每一位可以为 1 或者 0。因此,共有 2 ** 16 或 65536 个可能的 TCP 端口地址。对于要扫描的整个地址空间,需要提供 0 到 65535 的 端口范围,像这样:

在这个李忠,远程系统的所有开放端口都由扫描所有可能的 TCP 端口地址来识别。我们也可以修改扫描配置使用破折号记法来扫描地址序列。

这个例子中,TCP SYN 扫描执行在由 RHOST 变量指定的所有主机地址的 80 端口上。与之相似, RHOSTS 可以使用 CIDR 记法定义网络范围。

Metasploit SYN 扫描辅助模块背后的底层原理和任何其它 SYN 扫描工具一样。对于每个被扫描的端口,会发送 SYN 封包。SYN+ACK 封包会用于识别活动服务。使用 MEtasploit 可能更加有吸引力,因为它拥有交互控制台,也因为它是个已经被多数渗透测试者熟知的工具。

除了我们之前学到了探索技巧,hping3 也可以用于执行端口扫描。这个秘籍展示了如何使用 hping3 来执行 TCP 隐秘扫描。

为了使用 hping3 执行 TCP 隐秘扫描,你需要一个运行 TCP 网络服务的远程服务器。这个例子中我们使用 Metasploitable2 实例来执行任务。配置 Metasploitable2 的更多信息请参考第一章中的“安装 Metasploitable2”秘籍。

除了我们之前学到了探索技巧,hping3 也可以用于执行端口扫描。为了使用 hping3 执行端口扫描,我们需要以一个整数值使用 --scan 模式来指定要扫描的端口号。

上面的例子中,SYN 扫描执行在指定 IP 地址的 TCP 端口 80 上。 -S 选项指明了发给远程系统的封包中激活的 TCP 标识。表格展示了接收到的响应封包中的属性。我们可以从输出中看到,接收到了SYN+ACK 响应,所以这表示目标主机端口 80 是开放的。此外,我们可以通过输入够好分隔的端口号列表来扫描多个端口,像这样:

在上面的扫描输出中,你可以看到,仅仅展示了接受到 SYN+ACK 标识的结果。要注意和发送到 443 端口的 SYN 请求相关的响应并没有展示。从输出中可以看出,我们可以通过使用 -v 选项增加详细读来查看所有响应。此外,可以通过传递第一个和最后一个端口地址值,来扫描端口范围,像这样:

这个例子中,100 个端口的扫描足以识别 Metasploitable2 系统上的服务。但是,为了执行 所有 TCP 端口的扫描,需要扫描所有可能的端口地址值。定义了源端口和目标端口地址的 TCP 头部部分是 16 位长。并且,每一位可以为 1 或者 0。因此,共有 2 ** 16 或者 65536 个可能的 TCP 端口地址。对于要扫描的全部可能的地址空间,需要提供 0 到 65535 的端口范围,像这样:

hping3 不用于一些已经提到的其它工具,因为它并没有 SYN 扫描模式。但是反之,它允许你指定 TCP 封包发送时的激活的 TCP 标识。在秘籍中的例子中, -S 选项让 hping3 使用 TCP 封包的 SYN 标识。

在多数扫描工具当中,TCP 连接扫描比 SYN 扫描更加容易。这是因为 TCP 连接扫描并不需要为了生成和注入 SYN 扫描中使用的原始封包而提升权限。Scapy 是它的一大例外。Scapy 实际上非常难以执行完全的 TCP 三次握手,也不实用。但是,出于更好理解这个过程的目的,我们来看看如何使用 Scapy 执行连接扫描。

为了使用 Scapy 执行全连接扫描,你需要一个运行 UDP 网络服务的远程服务器。这个例子中我们使用 Metasploitable2 实例来执行任务。配置 Metasploitable2 的更多信息请参考第一章中的“安装 Metasploitable2”秘籍。

此外,这一节也需要编写脚本的更多信息,请参考第一章中的“使用文本编辑器*VIM 和 Nano)。

Scapy 中很难执行全连接扫描,因为系统内核不知道你在 Scapy 中发送的请求,并且尝试阻止你和远程系统建立完整的三次握手。你可以在 Wireshark 或 tcpdump 中,通过发送 SYN 请求并嗅探相关流量来看到这个过程。当你接收到来自远程系统的 SYN+ACK 响应时,Linux 内核会拦截它,并将其看做来源不明的响应,因为它不知道你在 Scapy 中 发送的请求。并且系统会自动使用 TCP RST 封包来回复,因此会断开握手过程。考虑下面的例子:

这个 Python 脚本的例子可以用做 POC 来演系统破坏三次握手的问题。这个脚本假设你将带有开放端口活动系统作为目标。因此,假设 SYN+ACK 回复会作为初始 SYN 请求的响应而返回。即使发送了最后的 ACK 回复,完成了握手,RST 封包也会阻止连接建立。我们可以通过观察封包发送和接受来进一步演示。

在这个 Python 脚本中,每个发送的封包都在传输之前展示,并且每个收到的封包都在到达之后展示。在检验每个封包所激活的 TCP 标识的过程中,我们可以看到,三次握手失败了。考虑由脚本生成的下列输出:

在脚本的输出中,我们看到了四个封包。第一个封包是发送的 SYN 请求,第二个封包时接收到的 SYN+ACK 回复,第三个封包时发送的 ACK 回复,之后接收到了 RST 封包,它是最后的 ACK 回复的响应。最后一个封包表明,在建立连接时出现了问题。Scapy 中可能能够建立完成的三次握手,但是它需要对本地 IP 表做一些调整。尤其是,如果你去掉发往远程系统的 TSR 封包,你就可以完成握手。通过使用 IP 表建立过滤机制,我们可以去掉 RST 封包来完成三次握手,而不会干扰到整个系统(这个配置出于功能上的原理并不推荐)。为了展示完整三次握手的成功建立,我们使用 Netcat 建立 TCP 监听服务。之后尝试使用 Scapy 连接开放的端口。

这个例子中,我们在 TCP 端口 4444 开启了监听服务。我们之后可以修改之前的脚本来尝试连接 端口 4444 上的 Netcat 监听服务。

这个脚本中,SYN 请求发送给了监听端口。收到 SYN+ACK 回复之后,会发送 ACK回复。为了验证连接尝试被系统生成的 RST 封包打断,这个脚本应该在 Wireshark 启动之后执行,来捕获请求蓄力。我们使用 Wireshark 的过滤器来隔离连接尝试序列。所使用的过滤器是 tcp (ip.src == 172.16.36.135 || ip.dst == 172.16.36.135) 。过滤器仅仅用于展示来自或发往被扫描系统的 TCP 流量。像这样:

既然我们已经精确定位了问题。我们可以建立过滤器,让我们能够去除系统生成的 RST 封包。这个过滤器可以通过修改本地 IP 表来建立:

在这个例子中,本地 IP 表的修改去除了所有发往被扫描主机的目标地址的 TCP RST 封包。 list 选项随后可以用于查看 IP 表的条目,以及验证配置已经做了修改。为了执行另一次连接尝试,我们需要确保 Natcat 仍旧监听目标的 4444 端口,像这样:

和之前相同的 Python 脚本可以再次使用,同时 WIreshark 会捕获后台的流量。使用之前讨论的显示过滤器,我们可以轻易专注于所需的流量。要注意三次握手的所有步骤现在都可以完成,而不会收到系统生成的 RST 封包的打断,像这样:

此外,如果我们看一看运行在目标系统的 Netcat 服务,我们可以注意到,已经建立了连接。这是用于确认成功建立连接的进一步的证据。这可以在下面的输出中看到:

虽然这个练习对理解和解决 TCP 连接的问题十分有帮助,恢复 IP 表的条目也十分重要。RST 封包 是 TCP 通信的重要组成部分,去除这些响应会影响正常的通信功能。洗唛按的命令可以用于刷新我们的 iptable 规则,并验证刷新成功:

就像例子中展示的那样, flush 选项应该用于清楚 IP 表的条目。我们可以多次使用 list 选项来验证 IP 表的条目已经移除了。

执行 TCP 连接扫描的同居通过执行完整的三次握手,和远程系统的所有被扫描端口建立连接。端口的状态取决于连接是否成功建立。如果连接建立,端口被认为是开放的,如果连接不能成功建立,端口被认为是关闭的。

0条大神的评论

发表评论