渗透系数和透水率的区别?
一、表达是不同
1、渗透系数:表达式为:κ=kρg/η,式中k为孔隙介质的渗透率。
2、透水率:q=Q/(p·L),压水试验成果又以透水率q来表示。单位是吕荣(Lu)。
二、性质不同
1、渗透系数:为单位水力梯度下的单位流量,表示流体通过孔隙骨架的难易程度,渗透系数愈大,岩石透水性愈强。
2、透水率:压水p为1MPa时,每米试段长度L(m)每分钟注入水量Q(L/min)为1L时,称为1Lu。
扩展资料:
渗透系数的计算方法:
渗透系数K是综合反映土体渗透能力的一个指标,其数值的正确确定对渗透计算有着非常重要的意义。影响渗透系数大小的因素很多,主要取决于土体颗粒的形状、大小、不均匀系数和水的粘滞性等;
要建立计算渗透系数k的精确理论公式比较困难,通常可通过试验方法,包括实验室测定法和现场测定法或经验估算法来确定k值。
参考资料来源:百度百科-渗透系数
参考资料来源:百度百科-透水率
土石混合体渗透性能的正交试验研究
周中1 傅鹤林1 刘宝琛1 谭捍华2 龙万学2 罗强2
(1.中南大学土木建筑学院 湖南 长沙 410075
2.贵州省交通规划勘察设计研究院 贵州 贵阳 550001)
摘要 土石混合体作为土和石块的介质耦合体,具有非均质性、非连续性及试样的难以采集性等独特的性质,从而给研究带来极大的困难。土石混合体属于典型的多孔介质,其渗透特性与颗粒的大小、孔隙比及颗粒形状关系密切。本文采用室内正交实验,利用自制的常水头渗透仪,研究了砾石含量、孔隙比和颗粒形状三个因素在不同水平下对土石混合体渗透系数的影响。通过正交试验确定了三种因素对土石混合体渗透系数的影响顺序及各因素的显著性水平。提出了土石混合体渗透系数计算公式,并通过试验结果验证了计算公式的正确性,为土石混合体渗透系数的理论计算提供了一个简明有用的计算工具。
关键词 土石混合体 多孔介质 渗透性能 计算公式 正交试验
土石混合体一般由作为骨料的砾石或块石与作为充填料的粘土或砂组成,是介于土体与岩体之间的一种特殊的地质体,是土和石块的介质耦合体[1]。因为土石混合体具有物质组成的复杂性、结构分布的不规则性以及试样的难以采集性等独特的性质,从而给研究带来极大的困难,目前人们对于它的研究仍处于探索之中[2]。渗透与强度和变形特性,都是土力学中所要研究的主要力学性质,其在土木工程的各个领域中都有重要的作用[3]。土石混合体属于典型的非均质多孔介质[4],其渗透特性与颗粒的大小、颗粒组成、孔隙比及颗粒形状关系密切。土的渗透系数可以通过室内试验由达西定理计算得出,然而土石混合体的渗透系数却难以确定,主要原因是:取样困难;难以进行常规的渗透试验;大尺度的渗透试验不仅造价高准确性差,而且试验结果离散度大,难以掌握其规律性。迄今为止,国内还没有对土石混合体渗透性能进行研究的资料,现有研究成果局限于利用物理和数值模拟试验对其变形和力学性质进行研究,而对渗透性还未涉及。因此,能够求出土石混合体渗透系数的计算公式具有重要的理论意义和工程应用价值。
本文研究土石混合体中砾石含量、孔隙比(压实度)和颗粒形状三个因素在不同水平下对土石混合体的渗透系数的影响,找出三因素与土石混合体渗透系数之间的关系,并提出土石混合体渗透系数计算公式。
1 土石混合体渗透性能的正交试验
1.1 正交试验方案设计
在室内试验中考虑砾石含量、孔隙比(压实度)和颗粒形状三个因素对土石混合体渗透系数的影响,就每种因素拟考虑3个水平。对于这种3因素3水平的试验,如果考虑每一个因素的不同水平对基材的影响,则根据组合可得有33组试验,这对人力、物力与时间来说都是一种浪费,因此采用正交试验设计来研究这一问题更为合理。本试验所选取的正交表为L9(34),考虑试验误差的影响,但不考虑各因素间的交互作用(即假定他们之间相互没有影响)。共需9组试验,每组作平行试验3次,共27次渗透试验。本试验中采用的因素与对应的水平数如表1所示,其中粗粒形状分为球形体、六面体和三棱锥3个水平,分别由卵石、强风化石块和新打碎的碎石来近似替代。
表1 正交试验的因素水平
1.2 试样的基本物理力学性质
试验所取土样为正在修建的上瑞高速公路贵州段晴隆隧道出口处典型性土石混合体,其天然状态土的物理指标及颗粒级配曲线见表2和图1。由图1可知现场取回土样的不均匀系数Cu为12.31,说明土样中包含的粒径级数较多,粗细粒径之间差别较大,颗粒级配曲线的曲率系数Cc为1.59,级配优良。
表2 天然状态土的基本物理指标
图1 天然状态土的颗粒级配曲线
1.3 大型渗透仪的研制
《土工试验规程》(SL237—1999)规定粗粒土的室内渗透系数需由常水头渗透仪测试,国内常用的常水头渗透仪是70型渗透仪。70型渗透仪的筒身内径为9.44cm,试验材料的最大粒径为2cm,规范[5]要求筒身内径应为最大粒径的8~10倍,因此70型渗透仪的筒身内径过小,有必要研制大尺寸的渗透仪。自制渗透仪的内径和试样高度至少应为最大颗粒粒径的8倍,即至少应为16cm,另外,考虑到边界效应,试样的上下两头分别增加2cm,因此,自制渗透仪的内径和试样高分别取为16cm和20cm。考虑到土石混合体的渗透性较强,选取进排水管的口径为2cm。自制的大型常水头渗透仪的如图2 和图3所示。
图2 常水头渗透仪示意图
数据单位为cm
图3 自制渗透仪
2 试验结果分析
2.1 试验结果
按正交试验表L9(34)的安排,共需作9组试验,每组试验作平行试验3次,取3次测量的平均值,并乘以温度校正系数
,即可求出每组试验20℃时的渗透系数,渗透系数的测量结果见表3。
表3 渗透试验测定结果
续表
2.2 试验分析
运用正交试验的直观分析法和方差分析法,分析各因素对土石混合体渗透系数影响的主次顺序,绘出因素水平影响趋势图,求出各因素的显著性水平。
2.2.1 直观分析
对试验所得的土石混合体的渗透系数进行正交试验的极差分析,并画出各因素的水平影响趋势图。正交试验的极差分析表见表4,3个因素与渗透系数的关系见图4。
表4 极差分析表
图4 各因素与渗透系数的关系
A—砾石含量;B—孔隙比;C—粗粒形状
由正交试验的极差分析表可以看出,对土石混合体渗透系数影响的主次顺序为A→B→C,即砾石含量→孔隙比→颗粒形状。由各因素与渗透系数的关系图可以看出砾石含量越多渗透系数越大,孔隙比越大渗透系数越大,颗粒磨圆度越大渗透系数越小。在路基工程及大坝工程中,可以通过调节粗颗粒的含量、压实度及颗粒形状以获得工程所需的渗透系数。
2.2.2 方差分析
为了确定因素各水平对应的试验结果的差异是由因素水平不同引起的,还是由试验误差引起的,并对影响土石混合体渗透系数的各因素的显著性水平给予精确的数量评估,需采用正交试验的方差分析法对试验数据进行分析,分析结果如表5所示。
表5 方差分析结果
方差分析结果表明:
(1)因素各水平对应的试验结果的差异是由因素水平不同引起的,而不是由试验误差引起的;
(2)砾石含量对土石混合体渗透系数的影响高度显著,孔隙比对土石混合体渗透系数的影响显著,颗粒形状土石混合体渗透系数的影响不显著。
3 土石混合体渗透系数
3.1 渗透系数与砾石含量之间的关系
众所周知,土石混合体的渗透系数与颗粒的大小及级配有关,本文选择等效粒径d20和曲率系数Cc来表示土的颗粒大小和颗粒级配,原因是文献[3]认为等效粒径d20比其他粒径特征系数更能准确地表示颗粒的大小,而与颗粒级配有关的系数是不均匀系数Cu和曲率系数Cc,不均匀系数Cu只反映土粒组成的离散程度,曲率系数Cc能在一定程度上反映颗粒组成曲线的特性,因而曲率系数Cc更适合于评价土的颗粒级配。不同砾石含量的颗粒级配曲线如图5所示。由图5可以求出各曲线的粒径特征系数,见表6。
图5 试样的颗粒级配曲线
表6 不同粗粒含量时的粒径特征
由图6可知,其他条件相同时,土石混合体的渗透系数k与函数f(d20,Cc)呈线性关系,其中
。
图6 k20-f(d20,Cc)关系曲线
3.2 渗透系数与密实度之间的关系
由正交试验的方差分析可知,孔隙率e对渗透系数的影响虽不如粗粒含量大,但也是很显著的。在其他条件相同时,k与
呈线性关系,如图7所示。
土石混合体
3.3 渗透系数与颗粒形状之间的关系
狄凯尔与海阿特(Tikell and Hiatt)于1938年探讨了颗粒的“棱角性”与“圆度”对渗透系数的影响,并指出颗粒的棱角性越大,渗透系数越大[6]。由正交试验分析表可知Cs1∶Cs2∶Cs3=0.9∶1∶1.2,并且将试验数据进行回归分析,当形状系数Cs1=0.18,Cs2=0.2,Cs3=0.24时与试验结果最为接近,此结论与卡门(Carmen)的研究成果[7]相近。
3.4 土石混合体的渗透系数
由以上分析可知土石混合体的渗透系数与颗粒大小、颗粒级配、颗粒形状及孔隙比有关,同时渗透流体对渗透性也有一定的影响,主要是受液体的动力粘滞度η的影响,大量研究成果表明渗透系数k 与g/η 成正比[3,4,7]。因此,土石混合体的渗透系数计算公式为
土石混合体
式中:k为土石混合体的渗透系数,cm/s;Cs为颗粒的形状系数,m-3;d20为等效粒径,小于该粒径的土重占总土重的20%,m;Cc为颗粒级配曲率系数,
;e为孔隙比;g为重力加速度,9.8 N;η 为液体的动力粘滞度,kPa · s(10-6),η20=1.01×10-6kPa·s。
由公式(1)计算出20℃时土石混合体的渗透系数k20列于表7。与其他物理力学参数相比,土石混合体的渗透性变化范围要大得多。同时,受宏观构造和微观结构复杂性的影响,其渗透性具有高度的不均匀性[8]。为进一步验证公式(1)的正确性,将实测值与由公式(1)得出的计算值进行对比分析,见图8。由图8可知由公式(1)计算出的渗透系数值与实测值基本吻合,9组试样的平均相对误差为21%,这对于离散性很强的土石混合体的渗透系数来说已经具有足够的精确性。
表7 计算值与实测值对应关系
图8 计算值与实测值关系
4 结论
(1)通过正交试验获取了砾石含量、孔隙比和颗粒形状对土石混合体渗透系数影响的主次顺序,并得出各因素的显著性水平,工程设计中可以通过合理调整土石混合体的砾石含量、孔隙比(压实度)和颗粒形状,以达到控制其渗透能力的目的。
(2)土石混合体的渗透系数与等效粒径d20和曲率系数Cc组成的函数
成正比,并与孔隙比函数
成正比。
(3)提出了土石混合体渗透系数的计算公式,并通过试验结果验证了计算公式的正确性,为土石混合体渗透系数的定量预测提供了一个简明有用的计算工具。
参考文献
[1]油新华.土石混合体随机结构模型及其应用研究.北方交通大学博士论文,2001:1~18
[2]油新华,汤劲松.土石混合体野外水平推剪试验研究.岩石力学与工程学报,2002,21(10):1537~1540,60~129
[3]刘杰.土的渗透稳定与渗流控制.北京:水利电力出版社,1992:1~20
[4]薛定谔A E.多孔介质中的渗流物理.北京:石油工业出版社,1984:141~173
[5]中华人民共和国水利部.土工试验规程(SL237—1999).北京:中国水利水电出版社,1999:114~120
[6] Tickell FG,Hiatt WN.Effect of angularity of grains on porosity and permeability of unconsolidated sands.AAPG Bulletin,1938,22(9):1272~1274
[7]黄文熙.土的工程性质.北京:水利电力出版社,1984:60~129
[8]邱贤德,阎宗岭,刘立等.堆石体粒径特征对其渗透性的影响.岩土力学,2004,25(6):950~954
什么是渗透系数渗透系数的测定方法
渗透系数K是综合反映土体渗透能力的一个指标,其数值的正确确定对渗透计算有着非常重要的意义。那么你对渗透系数了解多少呢?以下是由我整理关于什么是渗透系数的内容,希望大家喜欢!
渗透系数的介绍
渗透系数又称水力传导系数(hydraulic conductivity)。在各向同性介质中,它定义为单位水力梯度下的单位流量,表示流体通过孔隙骨架的难易程度,表达式为:κ=kρg/η,式中k为孔隙介质的渗透率,它只与固体骨架的性质有关,κ为渗透系数;η为动力粘滞性系数;ρ为流体密度;g为重力加速度。在各向异性介质中,渗透系数以张量形式表示。渗透系数愈大,岩石透水性愈强。强透水的粗砂砾石层渗透系数10米/昼夜;弱透水的亚砂土渗透系数为1~0.01米/昼夜;不透水的粘土渗透系数0.001米/昼夜。据此可见土壤渗透系数决定于土壤质地。
渗透系数的计算 方法
影响渗透系数大小的因素很多,主要取决于土体颗粒的形状、大小、不均匀系数和水的粘滞性等,要建立计算渗透系数k的精确理论公式比较困难,通常可通过试验方法,包括实验室测定法和现场测定法或 经验 估算法来确定k值。
渗透系数的测定方法
渗透系数的测定方法主要分“实验室测定”和“野外现场测定“两大类。
1.实验室测定法
目前在实验室中测定渗透系数 k 的仪器种类和试验方法很多,但从试验原理上大体可分为”常水头法“和"变水头法"两种。
常水头试验法就是在整个试验过程中保持水头为一常数,从而水头差也为常数。 如图:
试验时,在透明塑料筒中装填截面为A,长度为L的饱和试样,打开水阀,使水自上而下流经试样,并自出水口处排出。待水头差△h和渗出流量Q稳定后,量测经过一定时间 t 内流经试样的水量V,则
V = Q*t = ν*A*t
根据达西定律,v = k*i,则
V = k*(△h/L)*A*t
从而得出
k = q*L / A*△h=Q*L /( A*△h)
常水头试验适用于测定透水性大的沙性土的渗透参数。粘性土由于渗透系数很小,渗透水量很少,用这种试验不易准确测定,须改用变水头试验。
变水头试验法就是试验过程中水头差一直随时间而变化,其装置如图:
水从一根直立的带有刻度的玻璃管和U形管自下而上流经土样。试验时,将玻璃管充水至需要高度后,开动秒表,测记起始水头差△h1,经时间 t 后,再测记终了水头差△h2,通过建立瞬时达西定律,即可推出渗透系数 k 的表达式。
设试验过程中任意时刻 t 作用于两段的水头差为△h,经过时间dt后,管中水位下降dh,则dt时间内流入试样的水量为
dVe = -a dh
式中 a 为玻璃管断面积;右端的负号表示水量随△h的减少而增加。
根据达西定律,dt时间内流出试样的渗流量为:
dVo = k*i*A*dt = k*(△h/L)*A*dt
式中,A——试样断面积;L——试样长度。
根据水流连续原理, 应有dVe = dVo,即得到
k = (a*L/A*t)㏑(△h1/△h2)
或用常用对数表示,则上式可写为
k = 2.3*(a*L/A*t)lg(△h1/△h2)
2. 野外现场测定法
渗水试验(infiltration test)一般采用试坑渗水试验,是野外测定包气带松散层和岩层渗透系数的简易方法。试坑渗水试验常采用的是试坑法、单环法、和双环法。
试坑法
是在表层干土中挖一个一定深度(30-50厘米)的方形或圆形试坑,坑底要离 潜水 位3-5米,坑底铺2一3厘米厚的反滤粗砂,向试坑内注水,必需使试坑中的水位始终高出坑底约10厘米。为了便于观测坑内水位,在坑底要设置一个标尺。求出单位时间内从坑底渗入的水量Q,除以坑底面积F,即得出平均渗透速度v=Q/F。当坑内水柱高度不大(等于10厘米)时,可以认为水头梯度近于1,因而K(渗透系数)=V。这个方法适用于测定毛细压力影响不大的砂类土,如果用在粘性土中,所测定的渗透系数偏高。
单环法
是试坑底嵌入一个高20厘米,直径35.75厘米的铁环,该铁环圈定的面积为1000平方厘米。铁环压入坑底部10厘米深,环壁与土层要紧密接触,环内铺2一3厘米的反滤粗砂。在试验开始时,用马利奥特瓶控制环内水柱,保持在10厘米高度上。试验一直进行到渗入水量Q固定不变为止,就可以按下式计算渗透速度:v=Q/F,所得的渗透速度即为该松散层、岩层的渗透系数值。
双环法
是试坑底嵌入两个铁环,增加一个内环,形成同心环,外环直径可取0.5米, 内环直径可取0.25米。试验时往铁环内注水,用马利奥特瓶控制外环和内环的水柱都保持在同一高度上,(例如10厘米)。根据内环取的的资料按上述方法确定松散层、岩层的渗透系数值。由于内环中的水只产生垂直方向的渗入,排除了侧向渗流带的误差,因此,比试坑法和单环法精确度高。内外环之间渗入的水,主要是侧向散流及毛细管吸收,内环则是松散层和岩层在垂直方向的实际渗透。
当渗水试验进行到渗入水量趋于稳定时,可按下式精确计算渗透系数(考虑了毛细压力的附加影响):K(渗透系数)= QL/ F(H+Z+L)。
式中:
Q-----稳定的渗入水量(立方厘米/分);
F------试坑内环的渗水面积(平方厘米);
Z-----试坑内环中的水厚度(厘米);
H-----毛细管压力(一般等于岩土毛细上升高度的一半)(厘米);
土洞地基稳定性计算中土体c、φ值的选用
在土洞地基稳定性的评价计算中,土体的黏聚力c、内摩擦角φ值是最关键的参数。土体的c、φ值指标,可以因为固结排水条件不同而表现为不同的数值。例如,同一种饱和黏性土,在固结排水和固结不排水试验中表现为不同的内摩擦角,而在不固结不排水剪切试验中内摩擦角φ=0。
为尽可能模拟工程中各种复杂的排水条件,在进行土体强度指标的c、φ值试验时,分为三种情况考虑,即三轴剪切试验的不固结不排水剪(UU)固结不排水剪(CU)及固结排水剪(CD),与其相对应的直接剪切试验分别为快剪,固结快剪和慢剪。三轴剪切试验相对直剪试验更能模拟土体实际受力状况以及更能严格控制排水条件,因此,其结果更为可靠。而直剪试验由于存在诸多弊端正处于被淘汰的局面。
为了说明地基土体不同试验方和排水条件对c、φ值差异影响,在《桂林市西门市场主体工程》场地,采取同一粉质粘土试样进行不同排水条件下的直接剪切试验和三轴剪切试验,其对比结果如表3-6(其中c′、φ′为有效应力强度指标值)。由表3-6 可知,同一土体采用不同的试验方法和排水条件,其值相差明显,由此用理论公式计算的地基承载力也相差很大。
表3-6 桂林市西门市场主体工程粉质粘土剪切试验结果 Table3-6 Shear testing result of silty clay in Ximen market's main building in Guilin city
测试单位: 桂林工学院土木工程测试中心 测试人: 刘之葵
充分了解各种不同固结排水条件剪切的实质,正确选用合理的固结排水条件试验结果,在土洞地基稳定性的评价计算中显得尤为重要。但目前,在工程实践中,许多勘察人员有时拿不准针对具体的工程,提出合理的三轴剪切试验类型,即到底是要获得不固结不排水剪指标,还是固结不排水剪指标或固结排水剪指标,对此不是十分清楚。而有的设计人员在计算在土洞地基稳定性时,对勘察报告书中所提供的不同固结排水条件得出不同的c、φ值而感到棘手,不知如何选用。有时为保险安全起见而人为地取小值,造成浪费;或者走向另一面,酿成土洞地基地面塌陷事故。因此,弄清三种固结排水条件的本质及其在土洞地基稳定性的评价计算中的运用,实为必要。
3.3.1 c、φ值试验及其取值分析
目前,在抗剪强度c、φ值试验中存在一些缺陷,造成试验值与实际有所出入,主要有以下几方面的原因[37]:
(1)仪器设备方面,当今所采用的直接剪切仪,不能模拟土体的实际受力状态,不能严格控制排水条件,人为规定剪切破坏面,等等诸多因素,使得其试验结果偏大。但一般情况下不用直剪试验结果。即使是三轴剪切仪克服了直剪仪的诸多弊端,但它也不能像真三轴仪那样完全模拟土体的受力状况,其采用的围压σ2=σ3,而实际情况往往是σ2≠σ3,使试验结果与实际相比仍有误差;
(2)在试验过程中,基坑开挖侧壁土体的应力路径与常规三轴试验的加荷方式,受力次序相反;
(3)在试验过程中,有时忽略土样的应力历史(前期固结压力Pcm);
(4)取样扰动,运样振动,将破坏土样的天然状态,而影响其试验结果。
而在试验结果取值方面,对工业与民用建筑而言,目前工程勘察设计人员往往直接采用工程勘察报告书中的c、φ值结果,因为其c、φ取值主要是用来计算地基土承载力,即使土体的c、φ值与实际有一些误差,除此之外,还有野外标贯试验,载荷试验,静探试验,依据室内试验的含水量W,孔隙比e,液性指数IL等查表,经验等等诸多方法综合确定。即使土体的c、φ值与实际有一些误差,对提供地基土承载力影响不大。若用来计算判断土洞地基稳定性,则必须对报告书中试验结果加以分析后才可采用,因为同一土体由于试验条件不同,其c、φ值差异较大,而c、φ值是土洞稳定性计算中非常重要系数,且对计算结果敏感。
3.3.2 不固结不排水剪
岩溶区的红粘土,有许多是呈软塑或流塑状态的软土,其孔隙比大,e=1~2,透水性弱,渗透系数K=10-6~10-8cm/s。这类软土往往是土洞发育的主要土层。对于软土地区的工程设计或稳定性评价,有的设计人员习惯采用固结不排水剪试验结果乘以0.7的系数(例如深基坑支护设计的土压力计算,在很多情况下计算得出的土压力比实际值小,结果造成基坑垮塌)。在这些软土地区的土洞评价,当诱发土洞塌陷的致塌作用力为机械振动(地震)、爆破时,其作用速度快,软土中的水来不及排出,应选用不固结不排水剪指标计算,同时应注意:
(1)软土在进行不固结不排水试验前,应在自重应力下进行预固结。这样可避免土样扰动给试验结果带来的影响,使土样尽可能恢复原来的应力状态。但目前试验人员在进行不固结不排水剪试验时,通常忽略这一点,没对试样进行预固结,使c、φ值指标偏小。
(2)采用合理的固结度。不同的固结度,其试验结果不一样,同一土样,固结度越高,强度也越大。尤其是在一些红粘土地区,由于红粘土含有较多的亲水矿物如蒙脱石、伊俐石等,在地下水或地表水作用下,易软化并形成软土,其固结度并不高,如果仍采用100%的固结度,其强度将偏大,设计偏于危险。我们知道,土层的固结度可表示为U=1-Ud/U0(Ud为当前孔隙水压力,U0为最初孔隙水压力),如果能测得孔隙水压力Ud,就能算出土体的原始固结度。
因此,现有的《土工试验规程》有关不固结不排水剪的内容,建议增加一条:“对软土进行不固结不排水剪切试验,其试验前应对软土进行自重应力下的预固结,所采用的固结度应根据土层的原始固结程度相应确定。”
3.3.3 固结不排水剪
从理论上分析,固结不排水剪指标适用除软土以外的其他大部分土层。其道理很简单,土洞的失稳许多情况下是突发性的,速度快,土中水来不及排水,用不排水剪;另外,土体本身有一定的固结(除软土或新近堆积土外),所以综合得出用固结不排水剪试验是符合实际的。但有以下两点必须注意:
(1)土体的渗透性:土体渗透系数相对较小时,土体的固结度不一定达到100%,如此时采用固结不排水剪指标,可适当考虑折减c、φ值。
(2)场地地下水:如果场地无地下水,或者对于粉土、粉砂等,其排水条件好,固结程度相对较高,可直接采用固结不排水剪试验结果。
3.3.4 固结排水剪
固结排水剪结果cd、φd值与固结不排水剪的有效应力c′、φ′值非常接近(理论上相等),由于试验时间较长,成本较高,工程中一般用得不多。
桂林漓江两岸部分范围的粉土,粉、细砂层的土洞塌陷稳定性评价,均可采用固结排水剪的指标cd、φd。
综合以上分析,并结合文献[38],桂林市岩溶区主要地基土层c、φ值剪切试验方法的选用,建议如表3-7:
表3-7 桂林市岩溶区地基土层c、φ值剪切试验的选用建议 Table3-7 Advice on the choice of c and φ values for foundation soil in shear testing in Guilin city Karst area
3.3.5 结论
(1)固结排水条件不同,土体的剪切试验指标c、φ值不同。
(2)不固结不排水剪切试验结果一般用于固结程度不高、弱透水性的软黏性土地区的土洞稳定性评价计算。在进行剪切试验前,一般应在自重压力下进行适当的预固结。
(3)固结不排水剪试验结果可用来进行除软土、砂土以外的绝大部分土层的土洞稳定性评价计算,如残积红粘土、冲洪积的粘土及粉质粘土。
(4)固结排水剪试验结果主要用于岩溶地区透水性较好的粉土、粉细沙等土层。
常见的室内岩土试验仪器有哪些?
提到室内岩土试验设备,像大型多功能直切测试系统、全自动固结仪-(AOS)、伺服电机控制动单剪系统(EMDSS)、多功能界面耦合测试系统(LSS)、高级动三轴系统-(DYNTTS)、饱和-非饱和土反压直剪仪UNSAT-BPS、商业型动三轴系统-(ELDTS)、全自动三轴系统-(TAS)、非饱和土三轴仪-(UNTAS)、岩石三轴仪(ROCK-TAS)、空心圆柱扭剪仪(HCA)、共振柱试验系统-(RCA)都是比较常见的,比如浙江吉欧科技的室内岩土试验设备就挺不错。室内岩土试验设备仪器在中 国应用很广,几乎搞土木工程资质资质资质资质资质资质的单位都有。浙江吉欧科技在国内的口碑非常不错。
土石混合体渗透性能的试验研究
周中1 傅鹤林1 刘宝琛1 谭捍华2 龙万学2 罗强2
(1.中南大学土木建筑学院 湖南 长沙 410075
2.贵州省交通规划勘察设计研究院 贵州 贵阳 550001)
摘要 土石混合体属于典型的多孔介质,其渗透特性与砾石的百分含量关系密切。通过自制的常水头渗透仪,测定了不同含砾量时土石混合体渗透系数值,研究发现含砾量与土石混合体渗透系数之间存在指数关系;基于幂平均法,提出了土石混合体复合渗透系数的计算公式,并通过试验结果验证了该式的正确性,为土石混合体渗透系数的理论计算提供了一个简明有用的计算工具。
关键词 土石混合体 多孔介质 渗透性能 复合渗透系数 经验公式
土石混合体一般是由作为骨料的砾石或块石与作为充填料的粘土或砂组成,它是介于土体与岩体之间的一种特殊的地质体,是土和石块的介质耦合体[1]。因为土石混合体具有物质组成的复杂性、结构分布的不规则性以及试样的难以采集性等特殊的性质,从而给研究带来极大的困难,目前人们对于它的研究仍处于探索之中[2]。渗透与强度和变形特性都是土力学中所要研究的主要力学性质,其在土木工程的各个领域都有重要的作用[3]。土石混合体属于典型的非均质多孔介质[4],其渗透系数是由高渗透性的砾石和低渗透性的土体复合而成的。土的渗透系数可以通过室内试验由达西定理计算得出,然而土石混合体的渗透系数却难以确定,主要原因是:取样困难;难以进行常规的渗透试验;大尺度的渗透试验不仅造价高、准确性差,而且试验结果离散度大,难以掌握其规律性。因此能够求出土石混合体复合渗透系数的计算公式具有重要的理论意义和工程应用价值。
土石混合体中土与砾石粒径的界限值为5mm,即将粒径小于5mm的颗粒称为土、大于5mm的颗粒称为石,砾石含量用P5表示[1]。利用自制的常水头渗透仪,研究砾石体积百分含量P5从0%逐步过渡到100%(间隔10%)时土石混合体的渗透系数,每种配比作平行试验3次,共33次渗透试验。
1 土石混合体渗透性能试验
1.1 试样的基本物理力学性质
试验所取土样为正在修建的上瑞高速公路贵州段晴隆隧道出口处典型性土石混合体,其天然状态土的物理指标及颗粒级配曲线见表1和图1。由图1可知现场取回土样的不均匀系数Cu为12.31,说明土样中包含的粒径级数较多,粗细粒径之间差别较大,颗粒级配曲线的曲率系数Cc为1.59,级配优良。
表1 天然状态土的基本物理指标
图1 天然状态土的颗粒级配曲线
1.2 大型渗透仪的研制
《土工试验规程》(SL237—1999)规定粗粒土的室内渗透系数需由常水头渗透仪测试,国内常用的常水头渗透仪是70型渗透仪。70型渗透仪的筒身内径为9.44cm,试验材料的最大粒径为2cm,规范[5]要求筒身内径应为最大粒径的8~10倍,因此70型渗透仪的筒身内径过小,有必要研制大尺寸的渗透仪。自制渗透仪的内径和试样高度至少应为最大颗粒粒径的8倍,即至少应为16cm,另外,考虑到边界效应,试样的上下两头分别增加2cm,因此,自制渗透仪的内径和试样高分别取为16cm和20cm。考虑到土石混合体的渗透性较强,选取进排水管的口径为2cm。自制的大型常水头渗透仪如图2和图3所示。
图2 自行研制的渗透仪
图3 常水头渗透仪示意图
数据单位为cm
1.3 试验步骤
首先,将由现场取回的土样烘干、过筛,并根据粒径的大小分为0~5 mm的土和5~20mm的砾石两部分。然后,按照试验要求的砾石体积百分含量P5,以10%的初始含水量配制试样,静置24 h。试验时,将配制好的试样分层装入圆桶中,每层装料厚度30mm左右,分层压实,记录每层的击实数。按上述步骤逐层装样,至试样顶部高出测压孔约3cm为止。测出装样高度,准确至0.1cm。在试样顶部铺一层2cm厚的细砾石作缓冲层。之后,由进水管注入蒸馏水,直至出水孔有水流出,静置24 h使试样充分饱和。用量筒从渗透水出口测定渗透量,同时用温度计测量水温,用秒表测记经一定时间的渗水量,共测读6次,取其平均值,6次结果相差不得超过7%,否则需重新测定。
1.4 试验数据
按照试验设计的各种砾石体积百分含量P5共需作11组试验,每组试验作平行试验三次,取3次测量的平均值,并乘以温度校正系数
,即可求出每组试验20℃时的渗透系数,渗透系数的测量结果见表2。
表2 渗透系数测定结果
2 试验结果分析
2.1 渗透系数与砾石含量的关系
不同含砾量的颗粒级配曲线如图4所示,由图4可以求出各曲线的粒径特征系数及不均匀系数Cu和曲率系数Cc。
图4 试样的颗粒级配曲线
图5为土石混合体砾石含量P5与20℃时渗透系数的关系曲线。从图5可以看出,随着含砾量的增加,渗透系数急剧增加,可见,在设计中可以通过调节砾石的含量来控制土石混合体的宏观渗透性能。
图5 粗粒含量与渗透系数的关系
从图5还可以发现,土石混合体中砾石的含量P5与渗透系数k之间存在指数关系,与文献[6]的研究成果相似,即
土石混合体
式中:k0为P5=0时土的初始渗透系数;n为与土石混合体本身性质相关的常数。对于文中试验值,k0与n分别为0.0006cm/s和8.82。在工程中可以通过少量试验来确定k0,n值,以此来预测不同级配土石混合体的渗透性。
2.2 土石混合体的复合渗透系数
近几十年来,许多学者在揭示影响和决定土的渗透系数内在因素及其相互关系方面进行了大量工作,并取得了有益的成果[7~12],被认为依然有效且目前常用的确定渗透系数的半经验、半理论公式有:
(1)水利水电科学研究院公式[7]:
土石混合体
式中:k10,k20分别为温度为10℃和20℃时的渗透系数(cm/s);η10/η20为温度为10℃和20℃的粘滞系数比;n为孔隙率;d20为等效粒径(mm)。
(2)泰勒(Taylor)[9]用毛管流的哈根-伯努力(Hange-Poiseuille)方程导出渗透系数的表达式:
土石混合体
式中:ds为当量圆球直径,可以用等效粒径d20代替;γw为液体容重;μ为液体粘滞度;e为孔隙比;C为形状系数,通常取C=0.2。
式(2)和式(3)均是针对土体的渗透特性提出的半经验、半理论公式,然而对于非均质性更强、粒径差别更大的土石混合体来说,其适用性不是很强。土石混合体中砾石形成骨架,细颗粒充填孔隙,其渗透系数是由低渗透介质土体的渗透系数kS和高渗透性介质砾石的渗透系数kG复合而成。土石混合体复合渗透系数不是按体积百分含量的简单复合,而是高低渗透性介质的耦合。在参考相关文献[10~12]的基础上,基于幂平均法,本文提出的土石混合体复合渗透系数k复合的表达式为
土石混合体
式中:P5为砾石的体积百分含量,%;kG为砾石的渗透系数,cm/s;kS为土的渗透系数,cm/s;f为系数。
砾石的体积百分含量P5可以由筛分法求出;土的渗透系数kS和砾石的渗透系数kG可以由室内试验直接求出或参考相关资料确定;系数f可以通过少量试验回归分析确定,因此可以说(4)式是一个简明实用的土石混合体复合渗透系数计算公式。
图6 不同计算方法结果比较
为进一步验证(4)式,我们将试验测得的k值与用(2),(3),(4)式计算得到的k值进行对比分析。结果见图6,具体数值见表3。由图6和表3可知据水利水电科学研究院公式和泰勒公式计算结果均高于实测值,尤其是当P5≤30%时,(2)式计算结果和(3)式计算结果比实测值大2~3个数量级,与实测值相差较大。而用本文方法得到的土石混合体的渗透系数最接近实测值,平均相对误差仅为0.6%,能够作为土石混合体渗透系数定量预测的有效工具。在工程设计中,可以根据工程对土石混合体渗透性的要求,依据本文提供的经验公式,调整土石混合体中砾石的含量,达到控制土石混合体渗透能力的目的。
表3 土石混合体渗透系数及相关参数
3 结论
(1)利用自制的常水头渗透仪,测定了不同含砾量时土石混合体的渗透系数值,并指出含砾量与土石混合体渗透系数之间存在指数关系。在工程设计中可以通过合理调整土石混合体中砾石的含量,达到控制其渗透性能的目的。
(2)指出土石混合体的渗透系数是一种由高渗透性的砾石和低渗透性的土体复合而成的,给出了土石混合体复合渗透系数的计算公式,并通过试验结果验证了计算公式的正确性,为土石混合体渗透系数的定量预测提供了一个简明有用的计算工具。
参考文献
[1]油新华.土石混合体随机结构模型及其应用研究.北方交通大学博士论文.2001:1~18
[2]油新华,汤劲松.土石混合体野外水平推剪试验研究.岩石力学与工程学报.2002,21(10):1537~1540,60~129
[3]黄文熙.土的工程性质.北京:水利电力出版社.1984:60~129
[4]薛定谔 A E.多孔介质中的渗流物理.北京:石油工业出版社.1984:141~173
[5]中华人民共和国水利部.土工试验规程(SL237—1999).北京:中国水利水电出版社,1999:114~120
[6]邱贤德,阎宗岭,刘立等.堆石体粒径特征对其渗透性的影响.岩土力学,2004,25(6):950~954
[7]刘杰.土的渗透稳定与渗流控制.北京:水利电力出版社,1992:1~20
[8] Wen X H,Gomez-Hernandez J J.Upscaling hydraulic conductivities in heterogeneous media:An overview.Journal of Hydrology,1996,183:ix~xxxii
[9] Taylor D W.Fundamentals of soil mechanics.John Wiley & SONS,Inc.,1948
[10] Brown W F.Solid mixture permitivities.Journal of Chemical Physic,1955,23(8):1514~1517
[11] Dagan G.Analysis of flow through heterogeneous random aquifers by the method of embedding matrix—1:Steady flow.Water Resources Research,1981,17(1):107~122
[12] Noetinger B.The effective permeability of a heterogeneous porous medium.Transport in Porous Media,1994,15:99~127
0条大神的评论